(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

2nd(cons1(X, cons(Y, Z))) → Y
2nd(cons(X, X1)) → 2nd(cons1(X, activate(X1)))
from(X) → cons(X, n__from(s(X)))
from(X) → n__from(X)
activate(n__from(X)) → from(X)
activate(X) → X

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

2nd(cons1(z0, cons(z1, z2))) → z1
2nd(cons(z0, z1)) → 2nd(cons1(z0, activate(z1)))
from(z0) → cons(z0, n__from(s(z0)))
from(z0) → n__from(z0)
activate(n__from(z0)) → from(z0)
activate(z0) → z0
Tuples:

2ND(cons(z0, z1)) → c1(2ND(cons1(z0, activate(z1))), ACTIVATE(z1))
ACTIVATE(n__from(z0)) → c4(FROM(z0))
S tuples:

2ND(cons(z0, z1)) → c1(2ND(cons1(z0, activate(z1))), ACTIVATE(z1))
ACTIVATE(n__from(z0)) → c4(FROM(z0))
K tuples:none
Defined Rule Symbols:

2nd, from, activate

Defined Pair Symbols:

2ND, ACTIVATE

Compound Symbols:

c1, c4

(3) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)

Removed 2 of 2 dangling nodes:

2ND(cons(z0, z1)) → c1(2ND(cons1(z0, activate(z1))), ACTIVATE(z1))
ACTIVATE(n__from(z0)) → c4(FROM(z0))

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

2nd(cons1(z0, cons(z1, z2))) → z1
2nd(cons(z0, z1)) → 2nd(cons1(z0, activate(z1)))
from(z0) → cons(z0, n__from(s(z0)))
from(z0) → n__from(z0)
activate(n__from(z0)) → from(z0)
activate(z0) → z0
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:

2nd, from, activate

Defined Pair Symbols:none

Compound Symbols:none

(5) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(6) BOUNDS(O(1), O(1))